

Distributional Effects of Surging Housing Costs under Schwabe's Law

VfS annual conference, Leipzig University

Volker Grossmann, **Benjamin Larin**, Hans Torben Löfflad, Thomas Steger September 24, 2019

University of St.Gallen; Halle Institute for Economic Research (IWH); Globalization of Real Estate Network Zurich

Introduction

• Characteristics of housing consumption

- Characteristics of housing consumption
 - Real rent has been continuously increasing

▶ data

- Characteristics of housing consumption
 - · Real rent has been continuously increasing
 - Largest expenditure category: 19% in US

- Characteristics of housing consumption
 - · Real rent has been continuously increasing
 - Largest expenditure category: 19% in US
 - Schwabe's law: expenditure share declines with income in the cross section

CEX (2015)

- Characteristics of housing consumption
 - Real rent has been continuously increasing
 - Largest expenditure category: 19% in US
 - Schwabe's law: expenditure share declines with income in the cross section data
- Growing public concerns

- · Characteristics of housing consumption
 - · Real rent has been continuously increasing
 - Largest expenditure category: 19% in US
 - Schwabe's law: expenditure share declines with income in the cross section
- Growing public concerns
 - Income inequality: Real income inequality increased 25 % more since 1970 when deflated with HH specific price index

Albouy, Ehrlich, & Liu (2016); Dustmann, Fitzenberger, & Zimmermann (2018)

▶ data

CEX (2015)

- Characteristics of housing consumption
 - Real rent has been continuously increasing
 - Largest expenditure category: 19% in US
 - Schwabe's law: expenditure share declines with income in the cross section
- Growing public concerns
 - Income inequality: Real income inequality increased 25 % more since 1970 when deflated with HH specific price index

Albouy, Ehrlich, & Liu (2016); Dustmann, Fitzenberger, & Zimmermann (2018)

· Wealth inequality: Rising house prices and housing costs affect the wealth distribution

Summers (2014); Kuhn, Schularick, & Steins (2018); Dustmann, Fitzenberger, & Zimmermann (2018)

Research questions

1) How do the dynamics in the real housing rent interact with

- a) the dynamics of the wealth distribution,
- b) household-specific welfare

in a growing economy?

Research questions

1) How do the dynamics in the real housing rent interact with

- a) the dynamics of the wealth distribution,
- b) household-specific welfare

in a growing economy?

2) How do these relations depend on Schwabe's law?

Method

 Frictionless macro-model with housing that is designed to think long term, augmented by household heterogeneity

Chatterjee (1994, JPubE); Caselli & Ventura (2000, AER)

Method

 Frictionless macro-model with housing that is designed to think long term, augmented by household heterogeneity

Chatterjee (1994, JPubE); Caselli & Ventura (2000, AER)

• Analytical results; model-based experiments; numerical techniques

Method

 Frictionless macro-model with housing that is designed to think long term, augmented by household heterogeneity

Chatterjee (1994, JPubE); Caselli & Ventura (2000, AER)

• Analytical results; model-based experiments; numerical techniques

 \rightarrow Fundamental mechanisms that operate in the absence of incomplete markets

Two steps of analysis & results

• Step #1: partial equilibrium - analytical analysis

- $\rightarrow \,\, {\rm Rent} \,\, {\rm channel}$
- \rightarrow Amplification of welfare differences

Schwabe's law doesn't matter

Schwabe's law matters

Two steps of analysis & results

• Step #1: partial equilibrium - analytical analysis

- → Rent channel Schwabe's law dœsn't matter
- → Amplification of welfare differences

• Step #2: general equilibrium - numerical analysis

- Policy experiment: abolishing zoning regulations as exogenous event that dampens rent growth
- ightarrow Comovement of rent and wealth inequality
- \rightarrow Aggregate welfare effects
- \rightarrow Household-specific welfare effects

Schwabe's law matters

Related literature

- Housing & macro: Piazzesi & Schneider (2016)
 - <u>Short run</u>: Davis and Heathcote (2005, *IER*); lacoviello (2005, *AER*); lacoviello and Neri (2010, *AEJ:M*); Kiyotaki et al. (2011, *JMCB*); Favilukis et al. (2015, *JPE*); Kydland et al. (2016); ...
 - Long run: Borri and Reichlin (2016, *JEDC*); Grossmann and Steger (2017); Miles and Sefton (2017); ...

Related literature

- Housing & macro: Piazzesi & Schneider (2016)
 - <u>Short run</u>: Davis and Heathcote (2005, *IER*); lacoviello (2005, *AER*); lacoviello and Neri (2010, *AEJ:M*); Kiyotaki et al. (2011, *JMCB*); Favilukis et al. (2015, *JPE*); Kydland et al. (2016); ...
 - Long run: Borri and Reichlin (2016, *JEDC*); Grossmann and Steger (2017); Miles and Sefton (2017); ...
- Saving and wealth inequality: De Nardi and Fella (2017, RED)
 - Most Bewley-Huggett-Aiyagari models study impact of alternative mechanisms on shape of stationary wealth distribution
 - Exceptions (1): Gabaix, Lasry, Lions, and Moll (2016, *Ectra*); Kaymak and Poschke (2016, *JME*); Hubmer, Krusell and Smith (2016)
 - Exceptions (2): Caselli & Ventura (2000, AER); Álvarez-Peláez and Díaz (2005, JME)

The model: households

Household sector: infinitely lived households

- Heterogeneous, infinitely-lived households indexed by $j \in \{1, 2, ..., J\}$

Household sector: infinitely lived households

- Heterogeneous, infinitely-lived households indexed by $j \in \{1, 2, ..., J\}$
- Dynamic problem of households j

$$\max_{\{s_j(t), c_j(t)\}_{t=0}^{\infty}} \int_0^\infty u\left(s_j(t), c_j(t)\right) e^{-\rho t} \mathrm{d}t$$

s.t.

 $\dot{W}_j(t) + c_j(t) + p(t)s_j(t) \leq r(t)W_j(t) + w(t)l_j$

Household sector: infinitely lived households

- Heterogeneous, infinitely-lived households indexed by $j \in \{1, 2, ..., J\}$
- Dynamic problem of households j

$$\max_{\{s_j(t), c_j(t)\}_{t=0}^{\infty}} \int_0^\infty u\left(s_j(t), c_j(t)\right) e^{-\rho t} \mathrm{d}t$$

s.t.

$$\dot{W}_j(t) + c_j(t) + p(t)s_j(t) \leq r(t)W_j(t) + w(t)l_j$$

• Exogenous ex-ante heterogeneity: $W_i(0)$ and l_i

Utility: motivation #1

• Instantaneous utility

$$\left(\overline{s}\equiv\sum_{j}n_{j}s_{j}
ight)$$

$$u(s_j, c_j) = \frac{\left[\left(s_j - \phi \overline{s}\right)^{\theta} \left(c_j\right)^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

Utility: motivation #1

Instantaneous utility

$$\left(\overline{s}\equiv\sum_{j}n_{j}s_{j}
ight)$$

$$u(s_j, c_j) = \frac{\left[\left(s_j - \phi \overline{s}\right)^{\theta} \left(c_j\right)^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

Karl Marx (1847)

A house may be large or small; as long as the neighboring houses are likewise small, it satisfies all social requirement for a residence. But let there arise next to the little house a palace, and the little house shrinks to a hut [...] the occupant of the relatively little house will always find himself more uncomfortable, more dissatisfied, more cramped within his four walls.

Utility: motivation #1

Instantaneous utility

$$\left(\overline{s}\equiv\sum_{j}n_{j}s_{j}\right)$$

$$u(s_j, c_j) = \frac{\left[\left(s_j - \phi \overline{s}\right)^{\theta} \left(c_j\right)^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

Karl Marx (1847)

A house may be large or small; as long as the neighboring houses are likewise small, it satisfies all social requirement for a residence. But let there arise next to the little house a palace, and the little house shrinks to a hut [...] the occupant of the relatively little house will always find himself more uncomfortable, more dissatisfied, more cramped within his four walls.

• Evidence for status preferences for housing in the US Bellet (2017)

7

$$e_j(t) \equiv rac{p(t)s_j(t)}{c_j(t) + p(t)s_j(t)} =$$

$$e_{j}(t) \equiv \frac{p(t)s_{j}(t)}{c_{j}(t) + p(t)s_{j}(t)} = \theta \left(1 + \frac{(1-\theta)\phi}{[1-(1-\theta)\phi]\frac{\mathcal{W}_{j}(0)}{\overline{\mathcal{W}}(0)}}\right)$$

with $W_j = W_j + \widetilde{w} l_j$

$$e_j(t) \equiv \frac{p(t)s_j(t)}{c_j(t) + p(t)s_j(t)} = \theta \left(1 + \frac{(1-\theta)\phi}{[1-(1-\theta)\phi]\frac{\mathcal{W}_j(0)}{\mathcal{W}(0)}} \right)$$

with $W_j = W_j + \widetilde{w}l_j$

 $\Rightarrow~$ Iff $\phi>$ 0, housing expenditure share is declining in income (Schwabe's law)

$$e_j(t) \equiv \frac{p(t)s_j(t)}{c_j(t) + p(t)s_j(t)} = \theta \left(1 + \frac{(1-\theta)\phi}{[1-(1-\theta)\phi]\frac{\mathcal{W}_j(0)}{\mathcal{W}(0)}} \right)$$

with $W_j = W_j + \widetilde{w}l_j$

- $\Rightarrow~$ Iff $\phi>$ 0, housing expenditure share is declining in income (Schwabe's law)
- \Rightarrow Aggregate housing expenditure share is constant over time

$$\overline{e} = rac{ heta}{1 - (1 - heta)\phi}$$

Results: partial equilibrium

Proposition: Rent channel

An increase (decrease) in the growth factor of real rents, $\bar{p}(\tau, t)$, contributes to less (more) wealth inequality in period t for $\sigma > 1$.

• The change in the wealth distribution, at any t, is described by

$$\frac{\partial \widehat{W}_{j}(t)}{\partial W_{j}(t)} = \frac{\mu(t)\widetilde{w}(t) - w(t)}{W_{j}(t)^{2}}$$

Proposition: Rent channel

An increase (decrease) in the growth factor of real rents, $\bar{p}(\tau, t)$, contributes to less (more) wealth inequality in period t for $\sigma > 1$.

• The change in the wealth distribution, at any *t*, is described by

$$\frac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} = \frac{\mu(t)\tilde{w}(t) - w(t)}{W_{j}(t)^{2}}$$

• The propensity to consume

wh

$$\mu(t) = \left[\int_t^\infty \left[\bar{p}(\tau, t)^\theta e^{-\bar{r}(\tau, t) - \frac{\rho}{\sigma - 1}(\tau - t)} \right]^{\frac{\sigma - 1}{\sigma}} \mathrm{d}\tau \right]^{-1}$$

ere $\bar{r}(\tau, t) \equiv \int_t^\tau r(v) \mathrm{d}v$ and $\bar{p}(\tau, t) \equiv \frac{p(\tau)}{p(t)}$ for $\tau \ge t$

• Owner vs. renter

(▶ Ŵ; analytics

Proposition: Welfare

Welfare of a household j relative to the representative household, at any t, is given by

$$\psi_j(t) = rac{\mathcal{W}_j(t)}{\bar{\mathcal{W}}(t)} \left(rac{\mathcal{P}_j(t)}{\bar{\mathcal{P}}(t)}
ight)^{-1} - 1.$$

• Ideal price index $\mathcal{P}_{j}(t) = rac{p(t)^{ heta}}{ heta^{ heta}(1- heta)^{1- heta}} rac{1- heta}{1- heta_{j}}$

Proposition: Welfare

Welfare of a household j relative to the representative household, at any t, is given by

$$\psi_j(t) = rac{\mathcal{W}_j(t)}{\bar{\mathcal{W}}(t)} \left(rac{\mathcal{P}_j(t)}{\bar{\mathcal{P}}(t)}
ight)^{-1} - 1.$$

- Ideal price index $\mathcal{P}_{j}(t) = rac{p(t)^{ heta}}{\theta^{ heta}(1-\theta)^{1- heta}}rac{1- heta}{1- heta_{j}}$
- Price-index channel: two-sectoral structure & non-homothetic preferences

Definition CEV

Corollary: Amplification of welfare differences

Stronger status concerns amplify, at any *t*, welfare differences, i.e.

$$\frac{\partial \psi_{j}(t)}{\partial \phi} = \frac{\theta \left[\frac{\mathcal{W}_{j}(t)}{\overline{\mathcal{W}}(t)}(t) - 1\right]}{(\phi - 1)^{2}} \begin{cases} > 0 & \text{for } \frac{\mathcal{W}_{j}(t)}{\overline{\mathcal{W}}(t)} > 1\\ < 0 & \text{for } \frac{\mathcal{W}_{j}(t)}{\overline{\mathcal{W}}(t)} < 1 \end{cases}$$

General equilibrium: production

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Grossmann and Steger (2017)

Production sectors

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

• Real estate development: \dot{N} extensive $Cost = P^{Z}\dot{N} + w\frac{\xi}{2}(\dot{N})^{2}, N \leq \kappa Z$ Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

- Real estate development: \dot{N} extensive $Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}, N \leq \kappa Z$
- Construction: \dot{X} intensive $\dot{X} = (M)^{\eta} \left(B^{X}L^{X}\right)^{1-\eta} - \delta^{X}X$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

general equilibrium)

Housing sector

- Housing services supply: S $S = X^{\gamma} N^{1-\gamma}$
- Real estate development: \dot{N} extensive $Cost = P^{Z}\dot{N} + w\frac{\xi}{2}(\dot{N})^{2}, N \leq \kappa Z$
- Construction: \dot{X} intensive $\dot{X} = (M)^{\eta} \left(B^{\chi}L^{\chi}\right)^{1-\eta} - \delta^{\chi}X$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Market clearing

- Labor: $L^{Y} + L^{X} = \sum_{j} n_{j} l_{j}$
- Land:

 $N + Z^{\gamma} < Z$

general equilibrium

Results: general equilibrium

• Steady state calibrated to postwar US

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations
 - Zoning regulations widely recognized as amplifier of surging rents in growing economy

Glæser, Gyourko, and Saks (2005); Saiz (2010); Albouy and Ehrlich (2018)

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations
 - Zoning regulations widely recognized as amplifier of surging rents in growing economy

Glæser, Gyourko, and Saks (2005); Saiz (2010); Albouy and Ehrlich (2018)

• Abolishment of zoning regulations as a natural candidate for an exogenous event that triggers changes in the time path of rents

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations
 - Zoning regulations widely recognized as amplifier of surging rents in growing economy

Glæser, Gyourko, and Saks (2005); Saiz (2010); Albouy and Ehrlich (2018)

- Abolishment of zoning regulations as a natural candidate for an exogenous event that triggers changes in the time path of rents
- Policy experiment

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations
 - Zoning regulations widely recognized as amplifier of surging rents in growing economy

Glæser, Gyourko, and Saks (2005); Saiz (2010); Albouy and Ehrlich (2018)

- Abolishment of zoning regulations as a natural candidate for an exogenous event that triggers changes in the time path of rents
- Policy experiment
 - Baseline scenario: steady state with binding zoning regulation $N = \kappa Z$

- Steady state calibrated to postwar US
- Policy parameter κ captures residential zoning regulations
 - Zoning regulations widely recognized as amplifier of surging rents in growing economy

Glæser, Gyourko, and Saks (2005); Saiz (2010); Albouy and Ehrlich (2018)

- Abolishment of zoning regulations as a natural candidate for an exogenous event that triggers changes in the time path of rents
- Policy experiment
 - Baseline scenario: steady state with binding zoning regulation $N = \kappa Z$
 - Policy-reform scenario: $\kappa = 0.17 \rightarrow \kappa = 1$

transitional dynamics towards unconstrained steady state

Calibration approach

- Zoning restriction parameter $\kappa = .17$: match observed allocation of land in residential sector Falcone (2015)

Calibration approach

- Zoning restriction parameter $\kappa = .17$: match observed allocation of land in residential sector Falcone (2015)
- Housing expenditures

housing expenditure share	aggregate	income quintile				
in percent		1st	2nd	3rd	4th	5th
$\phi=$ 0: no status pref.	19	19	19	19	19	19
Data: US (2015)	19	25	21	20	19	18
$\phi =$ 0.104: intermediate status pref.	19	25	22	20	19	18
	10	~~	~~	40		45
Data: UK (normalized)	19	33	23	19	16	15
$\phi=$ 0.260: strong status pref.	19	34	26	23	20	16

Calibration details

Rent

Wealth inequality

Welfare: CEV baseline vs policy-reform scenario

alls

• Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality
 - Status concerns for housing amplify welfare differences

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality
 - Status concerns for housing amplify welfare differences
- Policy experiment (ge): abolishing zoning regulations

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality
 - Status concerns for housing amplify welfare differences
- Policy experiment (ge): abolishing zoning regulations
 - Slower rent growth associated with reduction in wealth inequality by 0.7 pp

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality
 - Status concerns for housing amplify welfare differences
- Policy experiment (ge): abolishing zoning regulations
 - Slower rent growth associated with reduction in wealth inequality by 0.7 pp
 - Average welfare increases by 0.5 percent

- Frictionless macro model with housing sector to investigate dynamics of wealth inequality and determinants of welfare
- Non-homothetic preferences: Poor choose a higher housing expenditure share, compatible with Schwabe's Law
- · Partial equilibrium: analytical insights
 - Stronger rent growth produces less wealth inequality
 - · Status concerns for housing amplify welfare differences
- Policy experiment (ge): abolishing zoning regulations
 - Slower rent growth associated with reduction in wealth inequality by 0.7 pp
 - Average welfare increases by 0.5 percent
 - Poor benefit more than the rich, richest wealth decile is worse off

Appendix

Real rents in the long run

Source: US rents: BLS: average rent index: Knoll (2017); revised US rental data: Albouy, Ehrlich, and Liu (2016), based on Crone, Nakamura, and Voith (2010) and the Boskin Comission Report (1996)

 Real rents grow on average between 0.8 and 1.5 percent annually in the US

Schwabe's law

Source: US: CEX (2015); UK: ONS (2015); FR: Accardo et al. (2017); DE: Statistisches Bundesamt (2015)

- Historic evidence: Singer (1937, REStud), Stigler (1954, JPE)
- Recent evidence: Albouy, Ehrlich, & Liu (2016) estimate income elasticity below 1

Alternative interpretations of the term $\phi \bar{s}$

Minimum level of housing consumption φs

 (t), e.g.

 subsistence, minimum social requirement, physical-, or
 institutional minimum

 \rightarrow For $\bar{e}(t) = const.$ to hold $\bar{s}(t)$ has to grow at the same rate as aggregate consumption (rising aspirations or changing understanding of poverty)

Alternative interpretations of the term $\phi \bar{s}$

Minimum level of housing consumption φs

 (t), e.g.

 subsistence, minimum social requirement, physical-, or
 institutional minimum

 \rightarrow For $\bar{e}(t) = const.$ to hold $\bar{s}(t)$ has to grow at the same rate as aggregate consumption (rising aspirations or changing understanding of poverty)

2) Equivalent formulation: fixed housing expenditures

$$u(\tilde{s}_j, c_j) = \frac{\left[\tilde{s}_j(t)^{\theta} c_j(t)^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

 $W_j(t)+p(t)\tilde{s}_j(t)+c(t) \leq r(t)W_j(t)+w(t)l_j- p(t)\phi\bar{s}(t)$

fixed housing expenditures

where
$$\tilde{s}_j(t) \equiv s_j(t) - \phi \bar{s}(t)$$

Alternative formulation of status preferences

• Status preferences are often also captured as ratios instead of differences (Clark et al., 2008, *JEL*):

$$v(s_j, c_j) = \frac{\left[s_j^{\theta} \left(\frac{s_j}{\overline{s}}\right)^{\phi} c_j^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

Alternative formulation of status preferences

 Status preferences are often also captured as ratios instead of differences (Clark et al., 2008, JEL):

$$v(s_j, c_j) = \frac{\left[s_j^{\theta} \left(\frac{s_j}{\overline{s}}\right)^{\phi} c_j^{1-\theta}\right]^{1-\sigma} - 1}{1-\sigma}$$

• Housing expenditure share:

$$\mathbf{e}_j = \frac{\theta + \phi}{1 + \phi}$$

 $\Rightarrow v(s_j, c_j)$ cannot capture heterogeneity in housing expenditure shares

Status preferences in both goods

· Generalization of status preferences

$$u(s_j, c_j) = \frac{\left[\left(s_j - \phi_s \overline{s}\right)^{\theta} \left(c_j - \phi_c \overline{c}\right)^{1-\theta}\right]^{1-\sigma} - 1}{1 - \sigma}$$

with $\phi_c, \phi_s \geq 0$ and \overline{c} is the average consumption of the numeraire good

- What matters is the difference $\phi_s \phi_c$: defining $\phi \equiv \frac{\phi_s \phi_c}{1 \phi_c}$ yields the same analytical expressions
- Housing expenditure share declines with income iff $\phi_s > \phi_c$ \rightarrow we simplify and set $\phi_c = 0$
$$u(s_j, c_j) = \frac{\mathcal{C}_j^{1-\sigma} - 1}{1-\sigma}, \quad \text{with} \quad \mathcal{C}_j = \left[\theta \left(s_j - \phi \overline{s}\right)^{1-\frac{1}{\kappa}} + (1-\theta)c_j^{1-\frac{1}{\kappa}}\right]^{\frac{\kappa}{\kappa-1}}$$

· Static elasticity of substitution

$$SES_j = \kappa + \frac{\phi}{\mathfrak{s}_j - \phi} \epsilon_{\mathfrak{s}_j, p}$$

- For $\kappa = 1$ we get $SES_j = 1 + \frac{\phi \overline{s}}{s_i \phi \overline{s}} \epsilon_{\mathfrak{s}_j, p} < 1$ (Note: $\epsilon_{\mathfrak{s}_j, p} < 0$)
- · Housing expenditure share

$$e_{j} = \frac{\theta^{\kappa} p^{1-\kappa}}{\theta^{\kappa} p^{1-\kappa} + (1-\theta)^{\kappa} \left(1 - \frac{\phi}{s_{j}}\right)}$$

- $Var(e_j) > 0$ iff $\phi > 0$
- $ar{e} = const.$ iff $\kappa = 1$ (Piazzesi and Schneider, 2016)

Renters vs. Homeowners

• An economy of homeowners ($s_j = N_j h$)

$$\max_{\{c_{j}(t), N_{j}(t)\}_{t=0}^{\infty}} \int_{0}^{\infty} u(c_{j}(t), N_{j}(t)h(t)) e^{-\rho t} dt s.t. \dot{W}_{j}(t) = r(t)A_{j}(t) - p^{N}(t)N_{j}(t) + w(t)l_{j} - c_{j}(t) A_{j}(t) = W_{j}(t) - P^{H}(t)N_{j}(t),$$

• where
$$p^N \equiv rP^H + \delta^X q^X x + q^X \dot{x} - \dot{P}^H$$

Renters vs. Homeowners

• An economy of homeowners ($s_j = N_j h$)

$$\begin{split} \max_{\substack{\{c_j(t),N_j(t)\}_{t=0}^{\infty} \\ N_j(t) \in \mathcal{N}_j(t) \\ \mathbf{x}_j(t) = r(t)A_j(t) - p^N(t)N_j(t) + w(t)l_j - c_j(t) \\ A_j(t) = W_j(t) - P^H(t)N_j(t), \end{split}$$

• where
$$p^N \equiv rP^H + \delta^X q^X x + q^X \dot{x} - \dot{P}^H$$

- FOC and all propositions are identical
- Non-arbitrage condition: ph = p^N ⇒ Replace p(t) accordingly and rent channel becomes a house price and user cost of capital channel

· Growth rate of household-specific wealth

$$\hat{W}_{j}(t) \equiv \underbrace{sav_{j}(t)}_{\text{divergence channel}} \underbrace{\frac{r(t)W_{j}(t) + w(t)l(t)}{W_{j}(t)}}_{\text{convergence channel}}$$

• Growth rate of household-specific wealth

$$\hat{W}_{j}(t) \equiv \underbrace{sav_{j}(t)}_{\text{divergence channel}} \underbrace{\frac{r(t)W_{j}(t) + w(t)l(t)}{W_{j}(t)}}_{\text{convergence channel}}$$

• Wealth divergence (convergence): $\frac{\partial \hat{W}_{j}(t)}{\partial W_{i}(t)} > (<)0$ for all j

· Growth rate of household-specific wealth

$$\hat{W}_{j}(t) \equiv \underbrace{sav_{j}(t)}_{\text{divergence channel}} \underbrace{\frac{r(t)W_{j}(t) + w(t)l(t)}{W_{j}(t)}}_{\text{convergence channel}}$$

• Wealth divergence (convergence):

$$rac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} > (<)0$$
 for all j

• Saving rate:
$$sav_j = 1 - \frac{\mu(W_j + \tilde{w}l)}{y_i}$$

· Growth rate of household-specific wealth

$$\hat{W}_{j}(t) \equiv \underbrace{sav_{j}(t)}_{\text{divergence channel}} \underbrace{\frac{r(t)W_{j}(t) + w(t)l(t)}{W_{j}(t)}}_{\text{convergence channel}}$$

• Wealth divergence (convergence):

$$rac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} > (<)0$$
 for all j

• Saving rate: $sav_j = 1 - \frac{\mu(W_j + \tilde{w}l)}{y_j}$

• Derivative:
$$\frac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} = \frac{\mu(t)\tilde{w}(t) - w(t)}{W_{j}(t)^{2}}$$

· Growth rate of household-specific wealth

$$\hat{W}_{j}(t) \equiv \underbrace{sav_{j}(t)}_{\text{divergence channel}} \underbrace{\frac{r(t)W_{j}(t) + w(t)l(t)}{W_{j}(t)}}_{\text{convergence channel}}$$

• Wealth divergence (convergence):

$$rac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} > (<)0$$
 for all j

• Saving rate: $sav_j = 1 - \frac{\mu(W_j + \tilde{w}l)}{y_j}$

• Derivative:
$$\frac{\partial \hat{W}_{j}(t)}{\partial W_{j}(t)} = \frac{\mu(t)\tilde{w}(t) - w(t)}{W_{j}(t)^{2}}$$

back

$$\int_{0}^{\infty} e^{-\rho t} \frac{\left[\mathcal{C}_{j}(t)\right]^{1-\sigma} - 1}{1-\sigma} dt \stackrel{!}{=} \int_{0}^{\infty} e^{-\rho t} \frac{\left[(1+\psi_{j})\overline{\mathcal{C}}(t)\right]^{1-\sigma} - 1}{1-\sigma} dt$$

$$\mathcal{C}_{j} \equiv (s_{j} - \phi \overline{s})^{\theta} c_{i}^{1-\theta} \text{ and } \overline{\mathcal{C}} \text{ is average composite consumption}$$

back

Production sectors

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Production sectors

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Housing sector

• Housing services supply: S

$$S = X^{\gamma} N^{1-\gamma}$$

• Real estate development: \dot{N} extensive $Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}, N \leq \kappa Z$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Production sectors

Housing sector

• Housing services supply: S $S = X^{\gamma} N^{1-\gamma}$

P Real estate development:
$$\dot{N}$$
 extensive
 $Cost = P^{Z}\dot{N} + w\frac{\xi}{2}(\dot{N})^{2}, N \leq \kappa Z$

• Construction: \dot{X} intensive $\dot{X} = (M)^{\eta} \left(B^{\chi} L^{\chi} \right)^{1-\eta} - \delta^{\chi} X$ Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$

Production sectors

Housing sector

- Housing services supply: S $S = X^{\gamma} N^{1-\gamma}$
- Real estate development: \dot{N} _{extensive} $Cost = P^{Z} \dot{N} + w \frac{\xi}{2} \left(\dot{N} \right)^{2}, N \leq \kappa Z$
- Construction: \dot{X} intensive $\dot{X} = (M)^{\eta} \left(B^{\chi} L^{\chi} \right)^{1-\eta} - \delta^{\chi} X$

Numeraire sector $Y = (K)^{\alpha} (B^{\gamma} L^{\gamma})^{\beta} (B^{\gamma} Z^{\gamma})^{1-\alpha-\beta}$ Market clearing

- Labor: L^{γ} -
 - $L^{Y} + L^{X} = \sum_{j} n_{j} l_{j}$

• Land:

 $N + Z^{\gamma} = Z$

Steady state I

Proposition: Steady state

Assume that $B^{\gamma}(t) = B^{\gamma}(0)e^{g^{\gamma} \cdot t}$ and $B^{\chi}(t) = B^{\chi}(0)e^{g^{\chi} \cdot t}$ with $g^{\gamma}, g^{\chi} \ge 0$.

The unique steady state growth rates then read as follows

- i) Variables $\{K, W, C, M, q^N, P^Z, R^Z, P^H, w\}$ grow at the rate g^Y
- ii) Variables $\{X, x\}$ grow at the rate $g^Y + (1 \eta)g^X$
- iii) Variable $\{\hat{p}\}$ grow at the rate $(1 \gamma \eta) g^{\gamma} + \gamma (1 \eta) g^{\chi}$
- iv) Variables $\{q^X, R^X\}$ grow at the rate $(1 \eta) (g^Y g^X)$
- v) Variables $\{h, 5\}$ grow at the rate $\gamma \left(\eta g^{Y} + (1 \eta) g^{X}\right)$
- vi) Variables $\{N, Z^{\gamma}, L^{\chi}, L^{\gamma}, r\}$ remain constant.

Proposition: Stationary wealth distribution

- i) The steady state wealth distribution is stationary in the sense that, for any two households j and j', the relative wealth position $W_j/W_{j'}$ dœs not change. (Reason: The condition $\mu(t)\tilde{w}(t) = w(t)$ holds in any steady state).
- ii) This applies for a zero growth steady state $(g^{Y}, g^{X} = 0)$ as well as for a positive growth steady state $(g^{Y}, g^{X} > 0)$.

General equilibrium I

A **general equilibrium** is a sequence of quantities, of prices, and of operating profits of housing services producers

$$\{Y(t), K(t), X(t), N(t), M(t), L^{Y}(t), L^{X}(t), Z^{Y}(t)\}_{t=0}^{\infty}, \\ \{\{c_{j}(t), s_{j}(t), W_{j}(t), K_{j}(t), Z^{Y}_{j}(t), N_{j}(t)\}_{j=1}^{J}\}_{t=0}^{\infty}, \\ \{p(t), P^{Z}(t), q^{N}(t), q^{X}(t), w(t), r(t), R^{Z}(t), R^{X}(t)\}_{t=0}^{\infty}, \{\pi(t)\}_{t=0}^{\infty} \}$$

for initial distributions $\left\{K_{j}(0), Z_{j}^{Y}(0), N_{j}(0)\right\}_{j=1}^{J}$ and given $\left\{B^{X}(t), B^{Y}(t)\right\}_{t=0}^{\infty}$ such that

- i) households maximize lifetime utilities;
- representative firms in X sector and Y sector, representative real estate developer, and housing services producers maximize PDV of infinite profit stream, taking prices as given;

General equilibrium II

- iii) labor markets clear: $L^{\chi}(t) + L^{\gamma}(t) = L$;
- iv) asset markets clear:

$$K(t) = \sum_{j} \frac{\mathcal{L}}{J} K_{j}(t), \ N(t) = \sum_{j} \frac{\mathcal{L}}{J} N_{j}(t), \ Z^{Y}(t) = \sum_{j} \frac{\mathcal{L}}{J} Z_{j}^{Y}(t) = Z(t) - N(t);$$

- v) perfect arbitrage across all assets holds;
- vi) market for housing services clears: $\sum_{j} \frac{\mathcal{L}}{I} s_{j}(t) = N(t)h(t)$;
- vii) market for Y good clears: $Y(t) = C(t) + I^{K}(t) + I^{N}(t) + M(t)$ (redundant due to Walras' law).

Calibration

Parameter	Value	Explanation/Target
L	1	Normalization
J	10	Match deciles
$\{W_{j}(0)/\bar{W}(0)\}_{j=1}^{J}$	see text	Wealth deciles (US, SCF, 2013)
$\{l_j(0)/\bar{l}(0)\}_{j=1}^{J}$	see text	average earnings within wealth percentile (US, SCF, 2013)
σ	2	<i>IES</i> = 0.5 (Havranek, 2015)
Ζ	1	Normalization
δ^{K}	0.056	Davis and Heathcote (2005)
α	0.28	Land income share in Y sector (Grossmann and Steger, 2017)
β	0.69	Labor expenditure share Y sector (Grossmann and Steger, 2017)
g ^Y	0.02	Growth rate GDP per capita (FRED)
δ^{X}	0.015	Hornstein (2009)
η	0.38	Labor expenditure share X sector (Grossmann and Steger, 2017)
g ^X	0.009	Rent growth: 1% (Knoll, 2017)
κ	0.169	Share of residential land: 16.9 percent (Falcone, 2015)
θ	{0.19, 0 .17, 0.15}	Average housing expenditure share: 0.19 (CEX, 2015)
ϕ	$\{0.000, \boldsymbol{0.104}, 0.260\}$	Difference between bottom and top income quintiles'
		housing expenditure share: {0, .07, .18} (CEX, 2015; UK)
ρ	0.019	Real interest rate: 0.0577 (Jorda et al., 2019)
γ	0.78	Land's share in housing wealth: 1/3
ξ	765	Transition speed in N: 31 percent in 30 years (Davis and Heathcote, 2007)

Saving rates & wealth-to-income ratios

$$egin{aligned} & \hat{W}_{j}(t) \equiv \textit{sav}_{j}(t) rac{r(t) \mathcal{W}_{j}(t) + w(t)}{\mathcal{W}_{j}(t)} \ & \Rightarrow & \text{We see that } rac{\partial \textit{sav}_{j}(t)}{\partial \mathcal{W}_{j}(t)} > 0 \end{aligned}$$

back

Decomposition - counterfactual no zoning experiment

$$\frac{\hat{W}_{10}}{\widehat{\bar{W}}} = \frac{sav_{10}}{s\bar{a}v}\frac{y_{10}/W_{10}}{\bar{y}/\bar{W}}$$

back

• Households care about $\{r(t), p(t), w(t)\}_{t=0}^{\infty}$, and $W_j(0)$

- Households care about $\{r(t), p(t), w(t)\}_{t=0}^{\infty}$, and $W_j(0)$
- Welfare

$$\widetilde{\psi}_{j} = \left(\frac{\mu^{1}}{\mu^{0}}\right)^{\frac{\sigma}{\sigma-1}} \frac{W_{j}^{1} + \widetilde{w}^{1}l_{j}}{W_{j}^{0} + \widetilde{w}^{0}l_{j}} \left(\frac{\mathcal{P}_{j}^{1}}{\mathcal{P}_{j}^{0}}\right)^{-1} - 1$$

- Households care about $\{r(t), p(t), w(t)\}_{t=0}^{\infty}$, and $W_j(0)$
- Welfare

$$\widetilde{\psi}_{j} = \left(\frac{\mu^{1}}{\mu^{0}}\right)^{\frac{\sigma}{\sigma-1}} \frac{W_{j}^{1} + \widetilde{w}^{1}l_{j}}{W_{j}^{0} + \widetilde{w}^{0}l_{j}} \left(\frac{\mathcal{P}_{j}^{1}}{\mathcal{P}_{j}^{0}}\right)^{-1} - 1$$

• Quantitatively relevant channels

- Households care about $\{r(t), p(t), w(t)\}_{t=0}^{\infty}$, and $W_j(0)$
- Welfare

$$\widetilde{\psi}_{j} = \left(\frac{\mu^{1}}{\mu^{0}}\right)^{\frac{\sigma}{\sigma-1}} \frac{W_{j}^{1} + \widetilde{w}^{1}l_{j}}{W_{j}^{0} + \widetilde{w}^{0}l_{j}} \left(\frac{\mathcal{P}_{j}^{1}}{\mathcal{P}_{j}^{0}}\right)^{-1} - 1$$

- Quantitatively relevant channels
 - 1. p(t) works symmetrically through μ and asymmetrically (Schwabe's law) through \mathcal{P}
 - \rightarrow see partial equilibrium plot
 - ightarrow all benefit, total-wealth-poor benefit more (ordering: 2,3,1)

- Households care about $\{r(t), p(t), w(t)\}_{t=0}^{\infty}$, and $W_j(0)$
- Welfare

$$\widetilde{\psi}_{j} = \left(\frac{\mu^{1}}{\mu^{0}}\right)^{\frac{\sigma}{\sigma-1}} \frac{W_{j}^{1} + \widetilde{w}^{1}l_{j}}{W_{j}^{0} + \widetilde{w}^{0}l_{j}} \left(\frac{\mathcal{P}_{j}^{1}}{\mathcal{P}_{j}^{0}}\right)^{-1} - 1$$

- Quantitatively relevant channels
 - p(t) works symmetrically through μ and asymmetrically (Schwabe's law) through P

 \rightarrow see partial equilibrium plot

- \rightarrow all benefit, total-wealth-poor benefit more (ordering: 2,3,1)
- 2. $W_j(0)$ declines for all in the same proportion
 - \rightarrow the higher W, the stronger the welfare effect
 - \rightarrow non-monotonicity driven by non-monotonicity in l_i